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Introduction 
This appendix documents staff’s inquiry into the problem of applying 
distribution-based statistical tests to average-based performance measures. 
Unlike for percentage-based and rate-based measures, no distribution-free 
tests for average-based measures are ready to implement given the current 
record in this proceeding. Consequently, the only current test option is the 
modified t-test. Staff’s primary concern is that the accuracy of normal 
distribution based statistical tests, such as the t-test, diminishes for smaller 
samples to the degree that those samples depart from normality.1 The 
Central Limit Theorem states that with larger samples, the sampling 
distribution of means is normally distributed even for non-normal raw 
score distributions. However, the degree of non-normality, and especially 
the degree of asymmetry, affects the sampling distribution, and especially 
affects one-tailed tests.2 
 
Staff investigated data transformations for applying normal distribution 
based tests to non-normal data.3 The investigation examines: (1) several 
actual performance data distributions, (2) a theoretical sampling mean 
distribution, (3) the statistical effects of several data-normalizing 
transformations, and (4) the performance evaluation implications of the 
most statistically appropriate transformation. Conclusions regarding the 
best option are presented. 
 

Method and Results 
Performance result distributions 
Sixteen average-based ILEC performance submeasure distributions from 
one performance measure were examined.4  Statistics for non-normality, 
skewness and kurtosis, were calculated. All but one of the distributions 
were positively skewed5 and all but two were leptokurtic. 6 While a normal 
                                              
1 Winer (1971), p. 6. 

2 Hays (1997), pp. 327-328; McNemar (1962), pp. 106-107. 

3 Performance measure 34 does not measure time to complete a task and is likely normally distributed. It is 
excluded from this discussion and will not be subject to log transformation. See Pacific Bell Comments on 
the Draft Decision at 3 (December 18, 2000). 

4 These distributions were provided by Pacific Bell. Staff also examined six distributions provided by 
Verizon and found the shape of those distributions to be similar. Those results are not reported here.  
 
5 Positive values indicate positive skewness, that is, the observations are concentrated at the lower end of 
the scale and gradually trail off to fewer observations in a longer “tail” to the right, the higher part of the 
 

Footnote continued on next page 
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curve has skeweness and kurtosis values of zero, the skewness of the 
sixteen submeasures ranged from 0.0 to 28.3, and the kurtosis ranged from 
–1.6 to 1746. Table 1 reports the skewness and kurtosis for the sixteen 
distributions. The frequency distribution graphs for these sixteen 
distributions are presented in Attachment 1 to this appendix. 
  

Table 1 
Submeasur

e 
N Mean Media

n 
Skewnes

s 
Kurtosis 

  
Ex. 1 179254 1.18 0 21.0 1430.3 
Ex. 2 23608 1.60 0 15.4 503.0 
Ex. 3 19943 6.91 6 12.1 271.2 
Ex. 4 17951 0.92 0 28.3 1745.7 
Ex. 5 17940 2.76 2 15.6 590.3 
Ex. 6 11864 1.40 0 9.1 184.6 
Ex. 7 9149 1.29 0 19.7 661.2 
Ex. 8 6827 2.48 1 10.3 198.6 
Ex. 9 6340 3.05 1 5.3 48.2 
Ex. 10 771 8.18 7 6.9 105.3 
Ex. 11 538 7.89 7 1.8 8.2 
Ex. 12 34 71.62 20 0.5 -1.6 
Ex. 13 14 34.36 20.5 1.4 1.5 
Ex. 14 9 6.00 4 1.9 4.0 
Ex. 15 8 47.50 40.5 0.7 -0.1 
Ex. 16 6 10.50 10.5 0.0 2.1 

 
Academic theory indicates data from measures of time to complete a task 
are lognormally distributed.7 Overall, the skewness and kurtosis of these 
distributions were consistent with what would be expected from a 
lognormal distribution. Only three of the five smallest samples (n < 35) 
had skewness less than one (< 1). Only two of the smallest five samples 
had kurtosis less than one (< 1). 
                                                                                                                                       
scale. Briefly stated, a positively skewed distribution has a longer tail for higher scores than for lower 
scores. Negative skewness values indicate the reverse, that is, a longer tail for the lower scores relative to 
the higher scores. 

6 Positive values indicate leptokurtic distributions, that is, the distribution is more peaked than a normal 
distribution. Negative values indicate platykurtic distributions, that is, the distribution is flatter than a 
normal distribution.  

7 Winer (1971), p. 400. 
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Theoretical sampling mean distributions 
To examine the extent of the problem posed by the skewness of the data, 
simulated distributions were examined to investigate the sample sizes 
necessary to achieve normality in the sampling mean distribution. While 
Central Limit Theorem poses that sampling mean distributions will be 
normal for many large non-normal samples, it is not clear if Central Limit 
Theorem’s general tenet applies to the data for these measures.  
 
At staff’s request, Pacific Bell’s consultant, Dr. Gleason, created a 
MathCad© worksheet to generate multiple samples from a lognormal 
distribution. This worksheet is included as Attachment 2. Using this 
worksheet five analyses were repeated for several selected performance 
results. The analysis summary following the worksheet pages shows that 
even for samples as large as 1000, many distributions are non-normal, the 
degree of departure from normality can be highly variable, and the log 
transformation notably improves normality.  
 
Transformation statistical effects 
Since measures of time to complete a task are theoretically lognormally 
distributed, log transformations of the raw data were examined. However, 
since the data contains values of zero (0), logs cannot be taken directly 
from the raw data, since the log of zero (0) cannot be computed. One 
recommendation is to add a constant of one (1) to each score.8 However, in 
several cases of performance measures, the raw data is actually 
categorized continuous data where all orders, for example, completed in 
the same day as initiated were assigned a zero. In these cases there are no 
“true” zero values since each order takes some time to complete. The lower 
bound of each interval is taken as the performance result, leaving the 
lowest interval with a value of zero.  
 
Suggesting that some value in the middle of the interval defined by each 
integer may be a more appropriate representation of the interval, staff 
asked Dr. Gleason to determine the optimal constant for the 
transformation. Dr. Gleason simulated continuous lognormal distributions 
which he then categorized using the performance data categories. Using a 
MathCad© worksheet (Attachment 3 to this appendix), Dr. Gleason then 

                                              
8 Id. 
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calculated a constant that, when added to the actual categorized data, 
would best represent the parameters of the original continuous 
distribution. Staff used Dr. Gleason’s worksheet to calculate the constant 
that would best fit actual ILEC and CLEC performance.9 The worksheet 
calculates that the upper limit for the optimal constant is approximately 
0.5, with virtually all values between 0.3 and 0.5.10 The mean and standard 
deviation of the distributions affect the value of the constant, making the 
optimal constant slightly different for each analysis.  
 
These results are theoretically reasonable as well. The mathematical 
midpoint of an interval in a skewed distribution11 is not likely to accurately 
represent the distribution of scores in most intervals. 
 
The sixteen distributions were then log-transformed using three different 
constants: 0.3, 0.4, and 0.5. The preponderance of transformations resulted 
in a closer approximation to normality. The results are presented in 
Attachment 4. In a few of the small samples where transformations did not 
improve normality, the transformed results are still relatively close to 
normality. From these transformations it is difficult to tell which constant 
best and most consistently improved normality. The transformations made 
with the constant of 0.5 improved normality most for large means, and the 
transformation with the constant of 0.3 improved normality most for the 
samples with small means. 
 

                                              
9 Staff used the worksheet by entering an actual posted result with a constant added to the mean. The 
standard deviation was entered as posted since it does not change when a constant is added to the data. If 
the added constant matched the calculated estimated constant (designated “α”), the calculated constant was 
taken to be the optimal constant. For example, for an actual posted performance result with a mean of 0.92 
and a standard deviation of 3.46, a mean of 1.28 (0.92 + 0.36) was entered as the final “guess” confirming 
that the optimal constant would be 0.36.  

10 A survey of average-based results for January through June, 2000, indicates that the theoretically most 
appropriate constant ranges between 0.3 and 0.5 for about 99 percent of the results (687 out of 696). For 
about one percent of the results (7 out of 696) a constant of between .06 and 1.2 appeared to be most 
appropriate.  However, these seven results occurred only in March 2000 and only once for each of seven 
submeasures, and the constants for all other months were 0.5 for each of these submeasures. Constants for 
three other submeasure results were estimated to be about 0.25, but for each submeasure, the other months 
had estimated constants of over 0.3. No results indicate optimal constants less than 0.3 for any result since 
March 2000. Constants under 0.3 appear to be anomalies. 

11 E.g., the interval 0.0 to 1.0 has a mathematical midpoint of 0.5. 
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Since it would be impractical to calculate the optimal constant for each 
result, and one of the constants must be selected, staff examined the 
sensitivity of the modified t-test to the different transformations. Staff 
sought to determine which one of the constants would result in the least 
discrepancy compared to using an optimal constant for each result. Type I 
error probabilities (α) were calculated for the sixteen submeasures. 
Attachment 5 presents a comparison of t-test results using raw scores and 
different log transformations. Use of the 0.4 constant for all results appears 
to minimize potential discrepancies between using result-specific optimal 
constants versus using a single constant for all results. In other words, 
compared to using the 0.3 or 0.5 constants for all results, using the 0.4 
constant results in an α closer to the α calculated by using the result-
specific optimal constant. 
 
The constant should be added wherever the average-based performance 
measures produce zeros by categorizing continuous data. Following this 
criterion, current information indicates that constants should be used with 
transformations for performance measures 7, 14, 21, 28, and 37, and that 
performance measures 1 and 44 need no constants.  
 
The constant should be added at the level of categorization. For example, if 
the smallest measurement unit is one day, then a constant of 0.4 days 
should be added to each observation. If the smallest measurement unit is 
one-hundredth of an hour, such as for performance measure 21, then the 
constant of 0.4 of one-hundredth (4 thousandths) of an hour should be 
added to each observation.  
 
Performance evaluation implications 
The meaning of the impact on actual performance result decisions was also 
examined. (See Attachment 5.) Fourteen of the 16 industry-aggregate 
results had the same “pass/failure” designation for the log transformation 
analysis as they did for the original raw score analysis. Two results failed 
the log-based analysis when they originally passed the raw score analysis: 
submeasure examples “9” and “10.” Both showed CLEC average 
performance worse than ILEC average performance, but the average 
differences were not statistically different using a raw score based test. 
Submeasure example “9” illustrates the nature of this failure. The original 
data analysis resulted in a “pass” with an alpha of 0.32, whereas the log 
transformed data resulted in a “failure” with an alpha of less than 0.0001. 
For both submeasure examples “9” and “10,” compared to the means, the 
medians showed greater differences between ILEC and CLEC 
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performance. In these instances, the log transformation has the effect of 
giving a better reflection of the difference between the two distributions  
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than was the case for the raw data. In the raw data analyses, extreme 
scores in the ILEC distribution mask the typically poorer performance for 
the CLEC. The transformation  minimizes the effects of these extreme 
values.  
 
Possibly the best illustration of the difference between the log and raw 
score based analyses is the results for one CLEC-specific result in 
submeasure example “9,” where the direction of the difference between 
the medians was the opposite for the means. Whereas the raw score CLEC 
mean was 2.8 days, compared to the ILEC mean of 3.0 days, the CLEC 
median was 3.0 and the ILEC mean was 1.0. In other words, the average 
time to complete the OSS task for the CLEC was 2.8 days, which is better 
than the 3.0-day average for the ILEC. In contrast, the median for the ILEC 
performance was one day while the median for the CLEC performance 
was two days. In other words,  the ILEC took one day or less to complete 
the OSS task for fifty percent of its customers, whereas the ILEC took three 
days or less to complete the same OSS task for fifty percent of the CLECs’ 
customers. Similar to the submeasure “9” and “10” aggregate results, the 
median difference for this CLEC result was much larger than the mean 
difference. These results show that the distributions are markedly 
different. Whereas the raw score analysis did not show this result to be 
significant (α = 0.86), the transformation analysis identified a significant 
difference (α < 0.0001).12 
 
In these cases, the log transformation analysis appears to track the 
differences in medians more closely than the means. This is consistent with 
academic sources that point out the value of median-based assessments 
when the data is skewed. For example, Hays (1997) states,  
                                              
12 A reverse of this situation is demonstrated in the BANY hypothetical data set provided in Verizon’s 
comments in John Jackson’s paper (see References). Results for the BANY data set show performance 
“failure” for the raw score analysis, but performance “success” for the log transformed analysis. In the 
BANY data set, using a 0.10 critical significance level, the difference between the ILEC and CLEC means 
is significant for a raw score analysis (p = 0.083), and marginally significant for a permutation analysis (p = 
0.0855 to 0.1085). However, one CLEC outlier is responsible for the CLEC mean being greater than the 
ILEC mean. With this outlier of 53.0, the CLEC mean is 9.9 compared to the ILEC mean of 8.3. However, 
without the outlier, the CLEC mean is less than the ILEC mean, 5.6. The cumulative distribution for this 
hypothetical data is presented in Attachment 6 and illustrates that typically the CLEC received better 
(simulated) performance than the ILEC. In this case, the log transformation analysis reflects typical 
performance more than average performance in that reduces the effect of the outlier and identifies these 
results as a performance “success” (p = 0.97). 
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The alteration of the score for a single extreme case in a 
distribution may have a profound effect on the mean. It is 
evident that the mean follows the skewed tail in the 
distribution, but the median does so to a lesser extent. The 
occurrence of even a few very high or very low cases can 
seriously distort the impression of the distribution given by 
the mean, provided that one mistakenly interprets the mean 
as the typical value. If you are dealing with a nonsymmetric 
distribution and you want to communicate the typical value, 
you must report the median. (p. 181) 

 
To assess the operational meaning of the transformation staff also 
examined the cumulative distribution. The cumulative percentage 
distribution data and graphs are included in Attachment 1 for 
submeasures 1 through 16, and in Attachment 7 for the CLEC-specific 
results described above. While a frequency distribution shows the number 
of “orders” completed for each time interval, a cumulative distribution 
shows the percentage of “orders” that were completed by a specific 
number of “days” or less.13 For example, the frequency distribution for 
submeasure “9” shows that approximately 500 of the ILEC’s orders took 3 
days to complete. In contrast, the cumulative distribution for submeasure 
“9” shows that about 80 percent of the ILEC’s orders were completed in 
three days or less. In the cumulative distribution graphs, the higher line 
represents better service. For example, for submeasure “9,” ILEC 
customers (black line) are getting better service than CLEC customers 
(white line) up until the point where approximately 80 percent of the 
orders have been completed – at a time interval of “3.” Where the ILEC 
line is higher means that compared to CLEC customers, a greater 
percentage of ILEC customers are getting their orders completed within 
the specified time intervals. After this point, CLEC customers are getting 
better service as illustrated by the lines crossing. After this point the CLEC 
line is higher, meaning that a higher percentage of CLEC customers are 
getting their “orders” completed within the same time interval as ILEC 
customers.  
 

                                              
13 The terms “days” and “orders” are used for illustrative purposes and do not necessarily represent the 
actual units. Because of possible proprietary data issues the actual terms are not used. 
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The graphs in these two attachments provide a more detailed comparison 
of the two distributions and illustrate what the log transformation analysis 
detects that the raw score analysis does not. The graph shows that for 
submeasure example “9,” for up to 80 percent of the customers, the ILEC 
gave better performance to its own customers. Specifically, 52 percent of 
ILEC customers’ orders, compared to 6 percent of CLEC customers’ orders, 
were completed within one day after the order was confirmed. Similarly, 
72 percent of ILEC customers’ orders, compared to 31 percent of CLEC 
customers’ orders, were completed within two days after the order was 
confirmed. It is only in the final 20 percent of the distributions that CLEC 
customers received better performance than did the ILEC customers. For 
example, by the time five days passed, 88 percent of ILEC customers’ 
orders were completed compared to 95 percent of CLEC customer’s 
orders. These graphs depict distributions that are not “substantially 
equal,” where CLEC customers are predominately disadvantaged even 
though, on the average, their completion interval is less. 
 

Conclusions 
The log transformation of time measurement raw scores that have been 
increased by a constant is academically supported for average-based parity 
measures of time to complete a task. Using a constant of 0.4 (of the smallest 
interval) for each transformation reasonably corrects for distribution 
distortions introduced by categorizing all continuous values into integers, 
brings the data close to being normally distributed, and results in the least 
variation in a Type I error probability calculation compared to using a 
different constant for each transformation. Additionally, sample mean 
distribution normality is improved not only for small to moderate samples, 
but also for large samples. For these reasons, this log transformation of 
scores with an added constant of 0.4 is the best practical option for 
applying the modified t-test to average-based parity measures. 
Additionally, the log transformation allows an appropriate statistical and 
practically meaningful performance assessment. Until other methods are 
shown to be superior and ready to implement, the Modified t-test 
application using log transformations is justifiable and reasonable.  
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Frequency distribution - Submeasure example 1
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Cumulative distribution - Submeasure example 1
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Frequency distribution - Submeasure example 2
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Frequency distribution detail - Submeasure example 2
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Cumulative distribution - Submeasure example 2
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Frequency distribution - Submeasure example 3
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Frequency distribution detail - Submeasure example 3
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Cumulative distribution - Submeasure example 3
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Frequency distribution - Submeasure example 4
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Cumulative distribution - Submeasure example 4
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Frequency distribution - Submeasure example 5
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Cumulative distribution - Submeasure example 5
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Frequency distribution - Submeasure example 6
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Frequency distribution detail - Submeasure example 6
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Cumulative distribution - Submeasure example 6
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Frequency distribution - Submeasure example 7

0

1000

2000

3000

4000

5000

6000

7000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Time interval

Fr
eq

ue
nc

y

ILEC CLEC
 



 

Appendix J, Attachment 1       Page 17 

Frequency distribution detail - Submeasure example 7
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Cumulative distribution - Submeasure example 7
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Frequency distribution - Submeasure example 8
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Cumulative distribution - Submeasure example 8
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Frequency distribution - Submeasure example 9
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Cumulative distribution - Submeasure example 9
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Frequency distribution - Submeasure example 10
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Cumulative distribution - Submeasure example 10
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Frequency distribution - Submeasure example 11
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Cumulative distribution - Submeasure example 11
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Frequency distribution - Submeasure example 12
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Cumulative distribution - Submeasure example 12
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Frequency distribution - Submeasure example 13
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Cumulative distribution - Submeasure example 13
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Frequency distribution - Submeasure example 14
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Cumulative distribution - Submeasure example 14
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Frequency distribution - Submeasure example 15
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Cumulative distribution - Submeasure example 15
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Frequency distribution - Submeasure example 16
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Cumulative distribution - Submeasure example 16
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Mathcad worksheet: Investigation of the mean, standard deviation, skewness, 
and kurtosis of the sampling distribution of the mean before and after log 
transformations. 
 
Set the parameters for the original process 
 
µ .8   Process mean 
 
σ 2.6   Process standard deviation 
 
Set sample sizes 
 
N 100    Sample size 
 
Set additive constant for categorized distribution 
 
C .4   Additive constant 
This simulation works by generating J samples of means for which the mean, 
standard deviation, skewness and kurtosis are calculated.  This process is 
repeated K times and the means of the statistics on the sampling distributions are 
calculated. 
 
Set number of samples for each simulation of the sampling distribution  
 
J 100   j 0 J 1..  
 
Set number of simulations  
 
K 100   k 0 K 1..  
 
The following calculate the log parameters of the distribution  
 

m ln µ2

µ2 σ2
  

m 1.447=  

 

s ln
µ2 σ2

µ2
  

s 1.565=  
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The following function generates a log normal distribution using logl 
parameters. 
 
g n m, s,( ) ernorm n m, s,( )  
This function generates means for four kinds of distributions: 
 1. lognormal 
 2. log of lognormal 
 3. categorized lognormal (into integers) with constant 
 4. log of categorized lognormal with constant 
 
f j( ) x g N m, s,( )

A0 mean x( )

A1 mean ln x( )( )

y floor x( ) C
A2 mean y( )

A3 mean ln y( )( )

Areturn

 

This function calculates statistics on each sample of sampling means and returns 
these statistics in a vector. 
sim k( )

X j< > f j( )

j 0 J 1..∈for

Y4 h. 0 mean X( )T
h< >

Y4 h. 1 stdev X( )T
h< >

Y4 h. 2 skew X( )T
h< >

Y4 h. 3 kurt X( )T
h< >

h 0 3..∈for

Yreturn

 

Y k< > sim k( )  
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Statistics for the distribution of sample means for the untransformed (original) 
distribution. 
 

Compare 

Mean:    mean YT 0< >
0.794=  µ 0.8=  

 

Standard Deviation: mean YT 1< >
0.247=  

σ

N
0.26=

 

Skewness:   mean YT 2< >
1.872=  

 

Kurtosis:   mean YT 3< >
7.846=  

 
 
Statistics for the distribution of sample means for the log transformed data. 
 

Compare 

Mean:    mean YT 4< >
1.448=  m 1.447=  

 

Standard Deviation:  mean YT 5< >
0.155=  

s

N
0.156=

 

Skewness:   mean YT 6< >
0.018=  

 

Kurtosis:   mean YT 7< >
0.011=  

 
 
Statistics for the distribution of sample means for the categorized data with an 
added constant of C. 

Compare 

Mean:    mean YT 8< >
0.91=   µ 0.8=  

 

Standard Deviation:  mean YT 9< >
0.241=  

σ

N
0.26=  

Skewness:   mean YT 10< >
1.963=  
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Kurtosis:   mean YT 11< >
8.344=  

 
 
Statistics for the distribution of sample means for the logs of the categorized 
data with an added constant of C. 
 

Compare 

Mean:    mean YT 12< >
0.603=  m 1.447=  

 

Standard Deviation:  mean YT 13< >
0.071=  

s

N
0.156=  

Skewness:   mean YT 14< >
0.206=  

 

Kurtosis:   mean YT 15< >
1.557 10 3.=  
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Skewness and kurtosis variability of theoretical sampling means 

  Raw data parameters   Sampling mean distribution  
                  Untransformed data       Transformed data 

Sample size SD M Cases Constant Skewness Kurtosis Skewness Kurtosis 
1000 2.6 0.5 24 0.3 1.7 7.1 0.1 0.2 

      1.7 6.7 0.1 0.1 
      1.6 5.9 0.1 -0.1 
      1.6 5.9 0.1 0.0 
      1.8 7.7 0.2 0.1 

1000 2.5 0.8 129 0.4 0.9 2.2 0.1 -0.1 
      0.7 1.1 0.2 -0.2 
      0.9 1.6 0.1 0.0 
      0.7 1.0 0.0 -0.1 
      1.2 4.3 0.1 0.3 

100 2.5 0.8 129 0.4 1.8 7.0 0.2 0.1 
      1.7 5.3 0.2 0.1 
      1.8 6.1 0.3 0.0 
      2.1 9.0 0.2 0.1 
      1.6 5.0 0.2 0.0 

1000 6 2.9 70 0.5 0.3 0.4 -0.1 -0.2 
      0.5 0.8 0.0 -0.1 
      0.4 0.5 -0.1 0.0 
      0.9 3.5 0.1 -0.1 
      0.5 0.5 0.0 -0.1 

100 6 2.9 70 0.5 1.4 4.9 0.1 0.0 
      0.9 1.4 0.2 -0.2 
      3.1 34.3 0.1 0.0 
      1.7 8.9 0.0 0.1 
      2.6 24.1 0.0 0.5 

100 7 6 131 0.5 0.6 0.7 0.0 0.2 
      0.6 1.1 0.1 -0.1 
      0.4 0.3 0.0 0.1 
      0.3 0.0 -0.1 0.0 
      0.6 1.1 -0.1 0.1 

30 7 6 131 0.5 1.2 3.3 0.0 0.0 
      0.9 1.5 0.0 -0.1 
      1.0 2.2 -0.1 -0.2 
      1.1 2.3 0.0 -0.2 
      0.8 1.1 -0.1 0.2 

1000 16 3.1 24 0.4 1.0 1.9 0.0 -0.2 
      3.2 32.2 0.0 -0.1 
      1.5 4.3 0.1 0.4 
      1.3 3.0 0.0 0.0 
      1.6 7.1 -0.1 0.1 
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100 25 13 29 0.5 0.9 1.5 0.0 -0.2 
      2.0 11.4 0.0 0.1 
      0.9 1.6 0.1 0.6 
      1.1 2.3 0.1 0.3 
          1.1 3.0 -0.1 0.0 
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Mathcad worksheet: Investigation of the added constant used with the log 
transformation on a categorized lognormal distribution 
 
 
Set the parameters for the original process 
 
µ .9  Process mean 
 
σ 4.7  Process standard deviation 
 
Set  size of sample for investigating distribution 
 
N 100000  
 
The following calculate the log parameters of the distribution  
 

m ln µ2

µ2 σ2
  

m 1.776=  

 

s ln
µ2 σ2

µ2

1
2

 
s 1.828=  

 
The following function generates a log normal distribution using log 
 parameters. 
 
g n m, s,( ) ernorm n m, s,( )

 
 
x g N m, s,( )  
 
Theoretical mean   µ 0.9=  
 
Emprical mean   mean x( ) 0.886=  
 
Theoretical standard deviation σ 4.7=  
 
Emprical standard deviation stdev x( ) 4.157=  
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I ceil max x( )( ) 1 I 622=  
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i 0 I..  
 
inti i  
 
y hist int x,( )   y 1 105.=  
 
ii 0 I 1..  
 
wii ii  
 
The following solves for a, that value which, when added to the bottom end of 
each interval, best recreates the emprical mean 
 

K y w.

N    
K 0.637=  

 
C K mean x( )( )2

 B 2 K mean x( )( ).  
 

α B B2 4 C.

2  
α 0.249=  

 
zii wii α  
 
length y( ) 622=  
 
length z( ) 622=  
 

Mean using added constant   y z.

N
0.886=

 
 

Standard deviation using added constant y z2.

N 1
y z.

N

2
4.115=

 
 

 
mean ln x( )( ) 1.775=   (Compare to the log parameters above) 
 
y ln z( ).

N
1.012=
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  Skewness and kurtosis of performance result distributions 
      Raw score Log(x+0.5) Log(x+0.4) Log(x+0.3) 
  Ex. 1       
  N 179254 179254 179254 179254 
  Mean 1.18 -0.1128 -0.2808 -0.4948 
  Median       0 -0.6931 -0.9163 -1.204 
  Skewness 21.002 1.331 1.291 1.244 
  Kurtosis 1430.297 0.28 0.126 -0.046 
  Ex. 2       
  N 23608 23608 23608 23608 
  Mean 1.6 0.1008 -3.81E-02 -0.2122 
  Median       0 -0.6931 -0.9163 -1.204 
  Skewness 15.411 1.053 0.942 0.817 
  Kurtosis 503.008 0.71 0.3 -0.131 
  Ex. 3       
  N 19943 19943 19943 19943 
  Mean 6.91 1.8604 1.8405 1.8193 
  Median       6 1.8718 1.8563 1.8405 
  Skewness 12.106 -1.27 -1.513 -1.818 
  Kurtosis 271.231 9.202 9.945 11.092 
  Ex. 4       
  N 17951 17951 17951 17951 
  Mean 0.9215 -0.1906 -0.3589 -0.5723 
  Median       0 -0.6931 -0.9163 -1.204 
  Skewness 28.256 1.634 1.528 1.412 
  Kurtosis 1745.695 2.331 1.773 1.188 
  Ex. 5       
  N 17940 17940 17940 17940 
  Mean 2.76 0.8407 0.783 0.7187 
  Median       2 0.9163 0.8755 0.8329 
  Skewness 15.569 0.666 0.499 0.278 
  Kurtosis 590.337 1.57 1.473 1.453 
  Ex. 6       
  N 11864 11864 11864 11864 
  Mean 1.3988 5.55E-02 -9.15E-02 -0.277 
  Median       0 -0.6931 -0.9163 -1.204 
  Skewness 9.105 0.925 0.861 0.789 
  Kurtosis 184.585 -0.336 -0.538 -0.755 
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  Skewness and kurtosis of performance result distributions 
  Ex. 7       
  N 9149 9149 9149 9149 
  Mean 1.2922 -8.06E-02 -0.2426 -0.4484 
  Median           0 -0.6931 -0.9163 -1.204 
  Skewness 19.716 1.362 1.289 1.208 
  Kurtosis 661.21 0.903 0.585 0.246 
  Ex. 8       
  N 6827 6827 6827 6827 
  Mean 2.4837 0.7652 0.7077 0.6453 
  Median           1 0.4055 0.3365 0.2624 
  Skewness 10.337 1.493 1.364 1.187 
  Kurtosis 198.575 3.221 3.021 2.868 
  Ex. 9       
  N 6340 6340 6340 6340 
  Mean 3.05 0.8676 0.8113 0.7491 
  Median           1 0.4055 0.3365 0.2624 
  Skewness 5.295 0.993 0.855 0.668 
  Kurtosis 48.225 1.505 1.414 1.377 
  Ex. 10       
  N 771 771 771 771 
  Mean 8.18 1.7666 1.7302 1.6875 
  Median           7 2.0149 2.0015 1.9879 
  Skewness 6.917 -0.998 -1.094 -1.214 
  Kurtosis 105.315 0.542 0.749 1.03 
  Ex. 11       
  N 538 538 538 538 
  Mean 7.89 1.7286 1.6883 1.6402 
  Median           7 2.0149 2.0015 1.9879 
  Skewness 1.81 -1.096 -1.177 -1.277 
  Kurtosis 8.242 0.408 0.579 0.802 
  Ex. 12       
  N 34 34 34 34 
  Mean 71.6176 3.2922 3.2818 3.2712 
  Median           20 3.001 2.9959 2.9908 
  Skewness 0.525 -0.017 -0.023 -0.03 
  Kurtosis -1.623 -1.712 -1.705 -1.698 
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  Skewness and kurtosis of performance result distributions 
  Ex. 13       
  N 14 14 14 14 
  Mean 34.3571 2.8667 2.8315 2.7871 
  Median             20.5 3.0442 3.0395 3.0347 
  Skewness 1.389 -1.54 -1.597 -1.664 
  Kurtosis 1.484 1.906 2.033 2.184 
  Ex. 14       
  N 9 9 9 9 
  Mean 6 1.2422 1.1746 1.0919 
  Median             4 1.5041 1.4816 1.4586 
  Skewness 1.874 -0.407 -0.492 -0.594 
  Kurtosis 3.97 -0.763 -0.73 -0.671 
  Ex. 15       
  N 8 8 8 8 
  Mean 47.5 3.244 3.2322 3.2201 
  Median             40.5 3.7135 3.7111 3.7086 
  Skewness 0.732 -1.041 -1.048 -1.056 
  Kurtosis -0.114 -0.426 -0.419 -0.412 
  Ex. 16       
  N 6 6 6 6 
  Mean 10.5 2.3667 2.3569 2.347 
  Median             10.5 2.3969 2.3877 2.3785 
  Skewness 0 -0.912 -0.92 -0.929 
  Kurtosis 2.086 2.601 2.611 2.62 
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Sensitivity analysis: Effects of transformations on alpha estimates 

Ex.    
No. 

Constant 
used Ni Mi SDi Nc Mc Z αααα    

Theoretical 
constant 

1 no trnsfmn 179254 1.18 2.97 4296 0.149 -22.485 1.00   
1 0.5 179254 -0.1128 0.9696 4296 -0.5295 -27.837 1.00   
1 0.4 179254 -0.2808 1.0537 4296 -0.7297 -27.594 1.00 0.44 
1 0.3 179254 -0.4948 1.653 4296 -0.9855 -19.228 1.00   
            
2 no trnsfmn 23608 1.6 4.8 21 3.52 1.832 0.0335   
2 0.5 23608 0.1008 0.9636 21 0.7646 3.155 0.0008 0.48 
2 0.4 23608 -0.0381 1.0474 21 0.6724 3.107 0.0009   
2 0.3 23608 -0.2122 1.1602 21 0.558 3.041 0.0012   
            
4 no trnsfmn 17951 0.9215 3.4631 276 0.337 -2.783 0.997   
4 0.5 17951 -0.1906 0.8292 276 -0.3251 -2.674 0.996   
4 0.4 17951 -0.3589 0.907 276 -0.4968 -2.507 0.994 0.36 
4 0.3 17951 -0.5723 1.012 276 -0.7131 -2.294 0.989   
            
5 no trnsfmn 17940 2.76 4.69 302 1.755 -3.693 0.9999   
5 0.5 17940 0.8407 0.739 302 0.6969 -3.353 0.9996 0.50 
5 0.4 17940 0.783 0.7783 302 0.6348 -3.282 0.9995   
5 0.3 17940 0.7147 0.8282 302 0.5651 -3.113 0.9991   
            
7 no trnsfmn 9149 1.2922 4.3519 30 5.4 5.162 0.00000013   
7 0.5 9149 -0.08056 0.9588 30 1.3947 8.414 0.00000000 0.40 
7 0.4 9149 -0.2426 1.0421 30 1.3477 8.345 0.00000000   
7 0.3 9149 -0.4484 1.1535 30 1.2916 8.249 0.00000000   
            
9 no trnsfmn 6340 3.05 4.9 714 3.1387 0.459 0.32   
9 0.5 6340 0.8676 0.782 714 1.1988 10.729 0.00 0.50 
9 0.4 6340 0.8113 0.8171 714 1.1639 10.932 0.00   
9 0.3 6340 0.7491 0.8608 714 1.1269 11.118 0.00   
            

10 no trnsfmn 771 8.18 7.95 179 8.45 0.409 0.341   
10 0.5 771 1.7666 1.0351 179 1.96 2.252 0.012 0.50 
10 0.4 771 1.7302 1.0883 179 1.9397 2.320 0.010   
10 0.3 771 1.6875 1.1571 179 1.9181 2.402 0.008   
            

11 no trnsfmn 538 7.89 6.33 115 9.0696 1.814 0.0351   
11 0.5 538 1.7286 1.0742 115 2.0628 3.028 0.0013 0.50 
11 0.4 538 1.6883 1.1347 115 2.0468 3.075 0.0011   
11 0.3 538 1.6402 1.2133 115 2.0303 3.130 0.0009   
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Ex.    
No. 

Constant 
used Ni Mi SDi Nc Mc Z αααα    

Theoretical 
constant 

13 no trnsfmn 14 34.3571 32.5874 30 25.03 -0.884 0.80   
13 0.5 14 2.8667 1.6447 30 3.1086 0.454 0.33 0.50 
13 0.4 14 2.8315 1.7188 30 3.1037 0.489 0.32   
13 0.3 14 2.7871 1.8152 30 3.0987 0.530 0.30   
            

14 no trnsfmn 9 6 7.2284 18 25.2222 6.514 0.00009   
14 0.5 9 1.2422 1.3276 18 3.1782 3.572 0.00364 0.50 
14 0.4 9 1.1746 1.4104 18 3.1736 3.472 0.00421   
14 0.3 9 1.0919 1.5187 18 3.1689 3.350 0.00504   
            

15 no trnsfmn 8 47.5 41.127 30 25.77 -1.328 0.887   
15 0.5 8 3.244 1.5084 30 3.2332 -0.018 0.507 0.50 
15 0.4 8 3.2322 1.5258 30 3.2291 -0.005 0.502   
15 0.3 8 3.2201 1.5439 30 3.225 0.008 0.497   
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Distributions - BANY hypothetical data
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Cumulative distribution - BANY hypothetical data
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Frequency distribution - CLEC-specific performance
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Cumulative Distribution - CLEC-specific performance
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